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Part 4

Running binary logistic regression models in R

Interpreting binary logistic regression output
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Steps

1. Prepare our data for analysis

2. Explore our data

3. Runthe binary logistic regression model
4. Evaluate the model

5. Evaluate the individual predictors

6. Predicted probabilities

7—Checkresiduals
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1. Preparing our data for analysis
The outcome

* The binary outcome should be stored as a numeric value with outcomes coded as 0
and 1

* Set 1 as the outcome level you are interested in:
— If you are interested in whether an individual is happy, set 1 as “happy”, set 0 as “not

happy”
— If you are interested in what predicts passing an exam, set 1 as “pass” and set 0 as “fail”




1. Preparing our data for analysis

The outcome

“ Participant_ID
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Numeric variable:

1 = Happy = “yes”

0 = Happy = “no”
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1. Preparing our data for analysis
The predictor(s)

e (Categorical predictor should be a factor

» Set the first factor level as the level you want to be the reference category
— If you are interested in the impact of having a hamster, set Hamster=No as the reference

category
— The coefficients will then tell you the impact of going from HamsterNo to HamsterYes




1. Preparing our data for analysis

The predictor(s)

strChappiness_data$Hamster)

Tells you about the structure

\_

Hamster is a factor with
two levels — factor level 1
is “No”. Factor level 2 is
((Yesll

of the “Hamster” variable

> strChappiness_data Haméter

J

| Factor w/ 2 levels "No","Yes"
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2. Explore our data

pe Y e’

[ T

tableChappiness_data$Hamster, happiness_data$Happy_numeric)

Happy_numeric
No evidence of

0 1 guasi-complete
No 12 8 separation or
Hamster Yes 8 25 complete

separation
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3. Run the binary logistic regression model
Code to run the binary logistic regression model

Function to run the . _
binary logistic Predictor This teI-Is R @) (I &) binary
i logistic regression

Keep output regression variable

N ] / /

modell <- glm(Happy_numeric ~ Hamster, data = happiness_data, family=binomial())

T !

Outcome { Dataframe ]
variable
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3. Run the binary logistic regression model
summary(model)

summary(modell)

Call:
glm(formula = Happy_numeric ~ Hamster, family = binomial(), data = happiness_data)

Deviance Residuals:
Min 1Q Median 3Q Max

-1.6835 -1.0108 ©0.7452 ©0.7452 1.3537 AS W|th “near

Coefficients: regression, we can

Estimate Std. Error z value Pr(>lzl)

(Intercept) -0.4055  ©0.4564 -0.888 0.3744 obtain statistics that
HamsterYes 1.5449 0.6110 2.528 0.0115 *

allow us to evaluate the
Signif. des: @ ‘**x’ Q @901 ‘**’ 9.01 ‘*’ 0.05 ‘.’ 0.1 ¢’ 1 . . .
PR, SOCES model and the individual

predictors /

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 7@0.252 on 52 degrees of freedom \
Residual deviance: 63.475 on 51 degrees of freedom
AIC: 67.475

Number of Fisher Scoring iterations: 4
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4. Evaluating the model
Comparing to the intercept only model

* To assess the fit of our model, we can compare our specified model to a model
containing only the intercept (no predictors)

 We do this by looking at a measure called the “deviance”:
—> This is a measure of goodness of fit of the model
- It tells you how much your model deviates from a model that perfectly predicts the data
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4. Evaluating the model University
Comparing to the intercept only model

Null deviance: Residual deviance:

Deviance for a HamsterYes  1.544Y 0.0110  2.5/8 ©0.0115 * Deviance for the
model ;{g_;nif. codes: @ ‘***’ 0.001 ‘*** 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 Speciﬁed model (i_e_
Containing onIy (Dispersion parameter for binomial family taken to be 1) Containing ‘hamster’
the intercept Res%g% as a predictor)
AIC: 67.475

Number of Fisher Scoring iterations: 4

Residual deviance is lower than
null deviance in our example

If our model is better than the model containing only the intercept,

the “residual deviance” should be lower than the “null deviance”
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4. Evaluating the model
..But is our model significantly better?

To assess this, we need to work out the model chi square (test statistic) and it’s p-value

Step 1: Calculate the chi square test statistic

4 )

modell_chi <- modell$null.deviance - modell$deviance <= Produces the model chi square

modell_chi value (equal to the null
deviance minus the deviance)
> modell_chi \_ s J
[1] 6.777043

This is the
improvement of the

new model over the
intercept only model

Our model chi square is 6.78




4. Evaluating the model
..But is our model significantly better?
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To assess this, we need to work out the model chi square (test statistic) and it’s p-value

Step 2: Calculate the degrees of freedom

modell_chi_df <- modell$df.null - modell$df.residual <=
modell_chi_df

> modell_chi_df
[1] 1

Our model df is 1

o

Produces the degrees of
freedom for the model (equal

to the df for the intercept only

model minus the deviance for
our model

~

J
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4. Evaluating the model
..But is our model significantly better?

To assess this, we need to work out the model chi square (test statistic) and it’s p-value

Step 3: Use the test statistic and the degrees of freedom to calculate the p-value

modell_p <- 1 - pchisq(modell_chi, modell_chi_df) Produces p-value for the model
modell_p

> modell_p
[1] 0.009233774
>

The p-value is .009
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4. Evaluating the model University S
..But is our model significantly better?

> modell_chi > modell_chi_df > modell_p

[1] 6.777043 [1] 1 [1] 0.009233774

>

Put together: X2(1) = 6.78, p = .009

This indicates that adding the hamster variable to our model significantly improved
the fit, compared to the null model containing intercept only




4. Evaluating the model
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Does binary logistic regression have R2?

RZ in linear regression = the proportion of variance explained by the model

In logistic regression, this doesn’t exist

But several statisticians have developed measures that work in a similar way to R2 for
logistic regression. These are called pseudo R2s.

They all give you an indication of how well the model explains the outcome variable
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4. Evaluating the model
Computing pseudo R?s

* Often, researchers report several measures of pseudo RZas there is little consensus
on the best method

Output all pseudo
You need to load R%s

n “DescTools” library(DescTools) /

PseudoR2(modell, which = "all")

Function to
roduce pseudo Which do R?
P P Model ich pseudo

R?s should R output?
name
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4. Evaluating the model University
Computing pseudo R?s

> PeandoR2fmada which = "all")
McFaddenAdj AldrichNelson VeallZimmermann Efron McKelveyZavoina
0.09646741 0.03952965 0.12003112 0.16345594 0.11337200 0.19890271 0.12786042 0.14563265
jur AIC B oglLi loglLik@ G2
0.12786042 67.47510983 71.41569365 -31.73755491 -35.12607642 6.77704301

 McFadden, CoxSnell and Nagelkerke are often reported

4 N
e McFadden =0.10
e CoxSnell=0.12
* Nagelkerke =0.16

\ J

* Not an easy interpretation of pseudo R?s but higher values equal better model fit
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5. Evaluating individual predictors
What is the intercept?
Call:
glm(formula = Happy_numeric ~ Hamster, family = binomial(), data = happiness_data)
Deviance Residuals:
Min 1Q Median 3Q Max
-1.6835 -1.0108 ©@.7452 ©.7452 1.3537 The |Og OddS
Coefficients:
e S Error 2 value Pr(slzl) of someone The log odds that Happy = yes
Int t) -0.4055 0.4564 -0.888 0.3744 i
— e ol with a for the reference category of
Signif. codes: © ‘¥’ 0.001 * .01 “*’ 0.05 .’ 0.1 IHam]Sc't”ehrl . our predictor variable (e.g.
value O 0] —
(Dispersion parameter for binomial family taken to be 1) HamSter - NO)

(No hamster)
Null deviance: 70.252 on 52 degrees of freedom .
Residual deviance: 63.475 on 51 degrees of freedom haV|ng d

AIC: 67.475 .
happiness
value of “Yes”

- J

Number of Fisher Scoring iterations: 4




5. Evaluating individual predictors
Hamster

Call:
glm(formula = Happy_numeric ~ Hamster, family = binomial(), data = happiness_data)

Deviance Residuals:
Min 1Q Median 3Q Max
-1.6835 -1.0108 ©.7452 ©.7452 1.3537

Coefficients:
Estimate Std. Error z value Pr(>|zl)

HamsterYes 1.5449 2.528 0.0115 *

Signif. codes: @ ‘***’ @.001 ‘**’ 0.01 ‘*’ ©¥.¢ 2 £ 2%

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 70.252 on 52 degrees of freedom
Residual deviance: 63.475 on 51 degrees of freedom
AIC: 67.475

Number of Fisher Scoring iterations: 4
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For our hamster variable, we
can see the variable is called
HamsterYes.

This tells us the the change in
the log odds of having a
happiness value of “Yes” when
going from the reference
category (HamsterNo) to
HamsterYes
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5. Evaluating individual predictors
Hamster
Call:
glm(formula = Happy_numeric ~ Hamster, family = binomial(), data = happiness_data)
Deviance Residuals:

Min 1Q Median 3Q Max
-1.6835 -1.0108 ©0.7452 ©.7452 1.3537
Coefficients: Going from the reference

Estimate Std. Error z value Pr(>lzl)

(Intercept) gului@ 0.4564 -0.883 0.3744 category (HamsterNo) to

HamsterYes 1.5449 0.6110 2.528 0.0115 * “w ” .
HamsterYes” results in a 1.54

Signif. codes: @ ‘***’ @9.001 ‘**’ 9.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 L. .
unit increase in the log odds of

. having a happiness value of
Null deviance: 70.252 on 52 degrees of freedom

Residual deviance: 63.475 on 51 degrees of freedom ”Yes”
AIC: 67.475

(Dispersion parameter for binomial family taken to be 1)

Number of Fisher Scoring iterations: 4
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5. Evaluating individual predictors
How do we interpret log odds...?!

* Log odds are very difficult to interpret.... so we don’t usually do this.
* | won’t be asking you to interpret the log odds in the lab/WBA/class test

* Instead we convert back from the log scale, which makes interpretation a little easier
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5. Evaluating individual predictors
We need to convert back from the log scale

* To covert back from the log scale, we exponentiate our log odds (“Estimate”). This
gives us our odds ratio

Function to
exponentiate Model
Creates an object called hame
modell_exponentiated 1

modell_exponentiated <- exp(modell$coefficients)
modell_exponentiated

Displays

. Grabs the
object

“Estimates”
from modell
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5. Evaluating individual predictors University S
This produces an odds ratio
Do these values look (Inter'ce;t) HamsterYes
familiar?! 0.6666667 4.6875000
!

University ©

Lancater E23 Change in\gdds (or odds ratio)

University © ®

Odds in the no hamster group

. ds after a unit change in the predictor
Odds = Probability event occurs Odds = Probability hgppy 0Odds ratio = \ Original odds
Probability event does not occur Probability notfappy
Happy - | Happy - What'’s the probability they fare happy? E e RETERE
No Yes 0Odds = 0.6667 0Odds =3.125
Hamster
-No
3.125
04 0dds ratio = =4.69
\ Odds = 55 = 0.667 0.6667
What'’s the probability they are NOT happy? ‘
12/20=0.6 ‘
I he odds that h e (Odds ratio: the change in odds after a
* Intercept: the odds that ha =yes . . .
P PPy =Y unit change in the predictor (Hamster -

in the reference group No -> Yes)
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5. Evaluating individual predictors
This produces an odds ratio

(Interce;t) ﬁamsterYes
0.6666667 4.6875000

* These values are easier to interpret than log odds!

e With a categorical outcome, this tells us the change in odds from a unit change in the
predictor

* The odds of being happy are 4.69x higher if you have a hamster than if you do not
have a hamster
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5. Evaluating individual predictors
Odds ratio confidence interval

 We also want a confidence interval arounds the odds ratio

* 95% confidence interval tells us the likely range the true odds ratio in the population
is contained in
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5. Evaluating individual predictors University T
Odds ratio confidence interval

Function to

exponentiate Model
{ Saves the output ] name

N\

modell_odds_confidence_intervals <- exp(confint(modell))
modell_odds_confidence_intervals

Produces
confidence
intervals for

the Estimate
- Y,

Displays
the
output
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5. Evaluating individual predictors
Odds ratio confidence interval

ngher bound of the
confidence interval
confidence interval

\ /

2.5 % 97.5 %
(Intercept) 0.2612025 1.611465
HamsterYes 1.4571273 16.307968

{ Lower bound of the ]

Odds ratio 95% confidence interval = 1.46-16.31
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5. Evaluating individual predictors
Is our p-value significant?

Coefficients:

Estimate Std. Error z value Pr(>l1zl)
(Intercept) -0.4055 0.4564 -0.888 0.3744
HamsterYes 1.5449 0.6110 2.528 0.0115 *

Signif. codes: @ ‘***’ @.001 ‘**’ 9.01 ‘*’ O.x’ 0.1 ¢’ 1
[ p=.012 J

Whether or not an individual has a

hamster is a significant predictor of
happiness
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* So far we’ve been talking in odds...

e But we can obtain probabilities from our model too. For instance:

— If an individual has a hamster, what’s the probability they will be happy?

— If an individual does not have a hamster, what’s the probability they will be happy?
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Adds a column called
m1_predicted_probabilities
to our happiness dataframe

happiness_data$ml_predicted_probabilities <- fitted(modell)

Value ranges
between 0

and 1

0.4000000

. e T o  When Hamster = Yes, predicted probability =
a6 46 No No 0 0.4000000 0.76

s S e 0 = When an individual has a hamster, there is a
53 BN N 0 probability of 0.76 that they will be happy (76%
s B v 1 of people with a hamster will be happy)
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6. Predicted probabilities

Adds a column called
m1_predicted_probabilities
to our happiness dataframe

happiness_data$ml_predicted_probabilities <- fitted(modell)

-

Participant_ID Hamster Happy Happy_numeric m1_predicted_probabilities

21 21 | Yes Yes 0.7575758

0.7575758

22 22 Yes Yes
23 23 Yes Yes
24 24 Yes Yes

0.7575758

R

0.7575758

 When Hamster = No, predicted probability =
0.40

- When an individual does NOT have a
hamster, there is a probability of 0.40 that they
will be happy (40% of people with no hamster

will be happy)
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Reporting logistic regression in APA format

A binary logistic regression was conducted to

examine whether having a hamster (yes/no) :
. . . . 95% confidence
is a significant predictor of happiness interval

(yes/no). The model predicted happiness

significantly better than the intercept-only -
model (X?(1) = 6.78, p = .009; McFadden

Pseudo R? = 0.10, CoxSnell Pseudo R2=0.12, COEEIE 'gfg

Nagelkerke Pseudo R = 0.16). The model (0.46)
revealed that individuals who have a hamster Hamster 1.55 4.69 1.46 16.31

had a significantly higher odds being happy (0.61)

relative to individuals who do not have a
hamster (Odds ratio = 4.69, 95% confidence
interval arounds the odds ratio = 1.46-16.31,

p =.012).
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Lab preparation (~10 minutes)

* Please watch the short lab preparation video prior to your lab

* We will walk through an R script that runs a binary logistic regression model
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Post-lecture activities

* Now available on Moodle
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Thank you for listening!

Please post any questions on the relevant Qualtrics link on Moodle.




